Lecture 3

Frequency Domain view of signals

Peter Y K Cheung

Dyson School of Design Engineering
Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/

E-mail: p.cheung@imperial.ac.uk

Example - Seimic signal measured in Alaska due to Sumatra Earthquake in 2004

Three stations recorded data for analysis

Frequency domain view of signal - more informative

Prediction of Tides

Periodicity of the Tides

Tides decomposed into periodic constituents

Kelvin's Tide Prediction Machine

Animation of the Tide Prediction Machine

https://www.ams.org/publicoutreach/feature-column/fcarc-tidesiii3

Time vs Frequency view of a sinewave

- Sinewave (sinusoidal signal) in time domain

- Same sinewave in frequency domain

Two sinewaves

- Adding 440 Hz to 1 kHz signal. The 440 Hz is twice as large as the 1 kHz signal.

Spectrum

Key idea - Fourier's theory

- Basic idea - any time domain signal can be constructed from weighted linear sum of sinusoidal signals (sine or cosine signals) at different frequencies.
- For example:

Spectrum - Frequency domain representation

- Instead of having to store individual time samples, we only need to store the amplitude, frequency and phase of each sinusoidal signal.

```
Time domain
```


- Spectrum of signal in frequency domain is represented by amplitude value for each frequency. There is also phase vs frequency, which is not shown here.

Frequency domain
Amplitude

Another Example

- Here is another time domain signal that is constructed with four sine waves:

Periodic Signal \& Fourier Series

- A periodic signal $x(t)$ with a period of To has the property:

$$
x(t)=x\left(t+T_{0}\right) \quad \text { for all } t
$$

- Fourier series expresses $x(t)$ as a weighted linear sum of sinusoids (or expontentials) of the fundamental frequency $f_{0}=1 / T_{0}$ and all it harmonics nf_{0} where $\mathrm{n}=2,3,4 \ldots$.

$$
x(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right) \quad \text { for all integers } \mathrm{n}
$$

- ω_{0} is called the fundamental frequency such that (f_{0} in cycles/sec or Hz, ω_{0} in radians $/ \mathrm{sec}$)

$$
\omega_{0}=2 \pi f_{0}=2 \pi / T_{0} \text { and } n \omega_{0} \text { are the harmonic frequencies }
$$

- a_{0} is the DC (mean) value of $x(t)$ and a_{n}, b_{n} are the Fourier coefficients at the frequency $n \omega_{0}$

How to find a_{0} ?

$$
x(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right)
$$

- To determine a_{0}, we multiply both sides by $\cos m \omega_{0} t$ and intergrate over T_{0} :

$$
\begin{aligned}
& \int_{0}^{T_{o}} x(t) d t=a_{0} \int_{0}^{T_{o}} d t \\
+ & \sum_{n=1}^{\infty} a_{n} \int_{0}^{T_{o}} \cos n \omega_{0} t d t \\
+ & \sum_{n=1}^{\infty} b_{n} \int_{T_{o}}^{T_{o}} \sin n \omega_{0} t d t
\end{aligned}
$$

- $2^{\text {nd }}$ and $3^{\text {rd }}$ terms integrates to zero over one period of time. Therefore only the first term survives:

$$
\int_{0}^{T_{o}} x(t) d t=a_{0} \int_{0}^{T_{o}} d t=a_{0} T_{o}
$$

- Therefore

$$
a_{0}=\frac{1}{T_{o}} \int_{0}^{T_{o}} x(t) d t
$$

How to find a_{n} and b_{n} coefficients? (1)

$$
x(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right)
$$

- To determine a_{0}, we simply intergrate both sides of the equation over one period T_{0} :

$$
\begin{aligned}
& \int_{0}^{T_{o}} x(t) \cos m \omega_{0} t d t=a_{0} \int_{0}^{T_{o}} \cos m \omega_{0} t d t \\
& \quad+\sum_{n=1}^{\infty} a_{n} \int_{0}^{T_{o}} \cos n \omega_{0} t \cos m \omega_{0} t d t \\
& \quad+\sum_{n=1}^{\infty} b_{n} \int_{T_{o}}^{T_{o}} \sin n \omega_{0} t \cos m \omega_{0} t d t
\end{aligned}
$$

- But:

$$
\int_{0}^{T_{o}} \cos m \omega_{0} t d t=0 \text { and } \int_{0}^{T_{o}} \cos n \omega_{0} t \cos m \omega_{0} t d t=0 \text { if } \mathrm{n} \neq \mathrm{m}
$$

- When $n=m$,

$$
\int_{0}^{T_{o}} \cos m \omega_{0} t \cos m \omega_{0} t d t=\frac{T_{0}}{2}
$$

How to find a_{n} and b_{n} coefficients? (2)

$$
x(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right)
$$

- Therefore, the ONLY term that survives after multiply by $\cos m \omega_{0} t$ and integration is:

$$
\int_{0}^{T_{o}} x(t) \cos m \omega_{0} t d t=a_{m} \frac{T_{0}}{2}
$$

- Hence, $\quad a_{n}=\frac{2}{T_{0}} \int_{0}^{T_{0}} x(t) \cos n \omega_{0} t d t \quad(\mathrm{~m}=\mathrm{n})$
- Similarly to find b_{n} multiply $\mathrm{x}(\mathrm{t})$ by $\sin m \omega_{0} t$ and integration over T_{o} :

$$
\int_{0}^{T_{o}} x(t) \sin m \omega_{0} t d t=b_{m} \frac{T_{0}}{2}
$$

- Hence, $\quad b_{n}=\frac{2}{T_{0}} \int_{0}^{T_{o}} x(t) \sin n \omega_{0} t d t$

Compact form of Fourier Series

$$
x(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right)
$$

- A more compact form of the Fourier Series is derived with the trigonometric identity:

$$
\begin{aligned}
C \cos \left(\omega_{0} t+\theta\right)= & C \cos \theta \cos \omega_{0} t-C \sin \theta \sin \omega_{0} t \\
& =a \cos \omega_{0} t+b \sin \omega_{0} t \\
x(t)= & a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right) \\
= & C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right)
\end{aligned}
$$

where

$$
C_{0}=a_{0}
$$

$$
\begin{array}{ll}
C_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}} & \text { amplitude } \\
\theta_{n}=\tan ^{-1}-\left(\frac{b_{n}}{a_{n}}\right) & \text { phase angle }
\end{array}
$$

Fourier Series of common signals (1)

Time Domain

c. Triangle

Frequency Domain

$$
\begin{aligned}
& a_{0}=A d \\
& a_{n}=\frac{2 A}{n \pi} \sin (n \pi d) \\
& b_{n}=0 \\
&(d-0.27 \text { in this example) } \\
& a_{0}=0 \\
& a_{n}=\frac{2 A}{n \pi} \sin \left(\frac{n \pi}{2}\right) \\
& b_{n}=0 \\
& \text { (all even harmomics are zero) } \\
& a_{0}=0 \\
& a_{n}=\frac{4 A}{(n \pi)^{2}} \\
& b_{n}=0 \\
& \text { (all even larmonics are zero) }
\end{aligned}
$$

Fourier Series of common signals (2)

$a_{0}=2 A / \pi$
$a_{n}=\frac{-4 A}{\pi\left(4 n^{2}-1\right)}$

$$
b_{n}=0
$$

$$
a_{1}=A
$$

(all other coefficients are zero)

Fourier series of an even signal

- The Fourier series for the square-pulse periodic signal shown above is:

$$
x(t)=\frac{1}{2}+\frac{2}{\pi}\left(\cos t-\frac{1}{3} \cos 3 t+\frac{1}{5} \cos 5 t-\frac{1}{7} \cos 7 t+\ldots . .\right)
$$

- The symmetry of this even signal result in three properties:

1. Such symmetry implies an even even function. Therefore the Fourier series representation only has cosine terms which are also even functions.
2. This symmetry at $\mathrm{t}=0$ also result in phase angle at all harmonic frequencies $=0$.
3. It only has odd harmonic components - no even harmonic components.

Fourier coefficiences and waveshaping

f, 3 f

- Low frequencies determines overall shape
- High frequencies determines detail structures

A Vector view of Signal

- To understand why a signal can be represented by linear sum of sinusoidal waveforms, it is useful to consider electrical signals as VECTORS.
- A vector is specified by its magnitude (or length) and its direction.
- Consider two vectors g and x . If we project g onto x , we get cx, where c is a scalar (i.e. constant with no direction).
- If we approximate g with $c x$, then

$$
g=c x+e
$$

- e, the error vector, is minimum when it is perpendicular to x.

- Cx is known as the projection of g onto x .
- It can be shown (in the notes below) that:

$$
c=\frac{\mathbf{g} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x}}=\frac{1}{|\mathbf{x}|^{2}} \mathbf{g} \cdot \mathbf{x}
$$

Orthogonal Set of signals

- If vector g is at right angle to vector x , then the projection of g and x is zero. These two vectors (or signals) are known to be orthogonal.
- It can easily be shown that two sinusoidal signals of DIFFERENT frequencies are orthogonal to each other.
- The complete set of sinusoidal signals (i.e. of all possible frequency) forms a COMPLETE orthogonal set of signals.
- What this means is that ALL time domain signals can be formed out of projects (or components) onto these these sinusoidal set of signals!
- This is the foundation of Fourier Series and Fourier Transform, which will be discussed further at the next Lecture.

Three Big Ideas

1. Time domain view of a signal is often insufficient. It is often more informative to consider how the signal would appear as a function of frequency, in the frequency domain.
2. Any time varying signal can be decomposed into sinusoidal constituent components of specific frequencies, phases, and amplitudes, just like the tidal level. This is the main idea of Fourier.
3. Two sinusoidal signals of different frequencies are orthogonal to each other, meaning that they have nothing in common, and it is not possible to "produce" one from the other through any linear methods.
